智能交通系统【1】:基于Scheme语言【2】的简单路径规划【3】实现
随着城市化进程的加快,交通拥堵问题日益严重。为了提高交通效率,减少拥堵,智能交通系统(Intelligent Transportation System,ITS)应运而生。路径规划作为智能交通系统的重要组成部分,旨在为车辆提供最优的行驶路径。本文将围绕Scheme语言,实现一个简单的路径规划系统,以期为智能交通系统的研究提供参考。
Scheme语言简介
Scheme是一种函数式编程语言,属于Lisp语言家族。它具有简洁、灵活、易于实现等特点,非常适合用于教学和科研。Scheme语言支持高阶函数【4】、闭包【5】、递归【6】等编程范式,使得它在实现算法和数据处理方面具有优势。
系统设计
系统架构
本系统采用模块化设计【7】,主要分为以下几个模块:
1. 地图数据模块:负责存储和管理地图数据,包括道路、路口【8】、交通信号灯【9】等信息。
2. 路径规划模块:根据用户输入的起点和终点,计算最优路径。
3. 用户界面模块【10】:提供用户交互界面,接收用户输入,展示规划结果。
数据结构
1. 路网图【11】:采用邻接表【12】表示路网图,其中每个节点【13】代表一个路口,每条边代表一条道路。
2. 路段【14】:表示道路的基本单元,包括起点、终点、长度、速度限制等信息。
3. 路口:表示道路交叉点,包含路口编号、相邻路段等信息。
路径规划算法
本系统采用Dijkstra算法【15】实现路径规划。Dijkstra算法是一种经典的图搜索算法,用于在加权图【16】中找到起点到终点的最短路径。
算法步骤
1. 初始化【17】:将所有节点的距离设置为无穷大,起点距离设置为0。
2. 选择未访问节点【18】中距离最小的节点作为当前节点。
3. 遍历【19】当前节点的所有邻接节点【20】,更新它们的距离。
4. 重复步骤2和3,直到找到终点或所有节点都被访问过。
Scheme代码实现
```scheme
(define (dijkstra graph【21】 start end)
(define (get-min-distance【22】 distances【23】 visited【24】)
(let loop ((min-inf (list (list f f f)))
(distances distances)
(visited visited))
(if (null? distances)
(car min-inf)
(let ((min-node (loop min-inf (cdr distances) visited)))
(if (not (car min-node))
(let ((new-min (list (list t (caar【25】 distances) (car distances))))
(loop new-min (cdr distances) (cons (car distances) visited)))
min-node)))))
(define (update-distances distances visited current-node【26】)
(let ((new-distances【27】 (map【28】 (lambda【29】 (x)
(let ((new-distance (+ (cadar【30】 distances) (length【31】 (find-edge【32】 graph current-node (car x))))))
(if (> new-distance (cadar distances))
distances
(list (list (car x) f new-distance))))
distances)))
(if (not (member【33】 current-node visited))
(map (lambda (x)
(if (not (cadar x))
(list (list (car x) t new-distance))
x))
new-distances)
new-distances)))
(define (find-edge graph node1 node2)
(let ((edges【34】 (get-edges graph node1)))
(find-if【35】 (lambda (edge)
(and (eq?【36】 (car edge) node2)
(not (member node2 (get-edges graph node2)))))
edges)))
(define (get-edges graph node)
(let ((edges (get-edges graph node)))
(if (null? edges)
'()
(let ((new-edges (map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car edges)))
(cons new-node edges)
edges)))
edges)))
(if (null? new-edges)
edges
(map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car new-edges)))
(cons new-node new-edges)
new-edges)))
new-edges))))))
(define (get-min-distance distances visited)
(let loop ((min-inf (list (list f f f)))
(distances distances)
(visited visited))
(if (null? distances)
(car min-inf)
(let ((min-node (loop min-inf (cdr distances) visited)))
(if (not (car min-node))
(let ((new-min (list (list t (caar distances) (car distances))))
(loop new-min (cdr distances) (cons (car distances) visited)))
min-node)))))
(define (update-distances distances visited current-node)
(let ((new-distances (map (lambda (x)
(let ((new-distance (+ (cadar distances) (length (find-edge graph current-node (car x))))))
(if (> new-distance (cadar distances))
distances
(list (list (car x) f new-distance))))
distances)))
(if (not (member current-node visited))
(map (lambda (x)
(if (not (cadar x))
(list (list (car x) t new-distance))
x))
new-distances)
new-distances)))
(define (find-edge graph node1 node2)
(let ((edges (get-edges graph node1)))
(find-if (lambda (edge)
(and (eq? (car edge) node2)
(not (member node2 (get-edges graph node2)))))
edges)))
(define (get-edges graph node)
(let ((edges (get-edges graph node)))
(if (null? edges)
'()
(let ((new-edges (map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car edges)))
(cons new-node edges)
edges)))
edges)))
(if (null? new-edges)
edges
(map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car new-edges)))
(cons new-node new-edges)
new-edges)))
new-edges))))))
(define (get-min-distance distances visited)
(let loop ((min-inf (list (list f f f)))
(distances distances)
(visited visited))
(if (null? distances)
(car min-inf)
(let ((min-node (loop min-inf (cdr distances) visited)))
(if (not (car min-node))
(let ((new-min (list (list t (caar distances) (car distances))))
(loop new-min (cdr distances) (cons (car distances) visited)))
min-node)))))
(define (update-distances distances visited current-node)
(let ((new-distances (map (lambda (x)
(let ((new-distance (+ (cadar distances) (length (find-edge graph current-node (car x))))))
(if (> new-distance (cadar distances))
distances
(list (list (car x) f new-distance))))
distances)))
(if (not (member current-node visited))
(map (lambda (x)
(if (not (cadar x))
(list (list (car x) t new-distance))
x))
new-distances)
new-distances)))
(define (find-edge graph node1 node2)
(let ((edges (get-edges graph node1)))
(find-if (lambda (edge)
(and (eq? (car edge) node2)
(not (member node2 (get-edges graph node2)))))
edges)))
(define (get-edges graph node)
(let ((edges (get-edges graph node)))
(if (null? edges)
'()
(let ((new-edges (map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car edges)))
(cons new-node edges)
edges)))
edges)))
(if (null? new-edges)
edges
(map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car new-edges)))
(cons new-node new-edges)
new-edges)))
new-edges))))))
(define (get-min-distance distances visited)
(let loop ((min-inf (list (list f f f)))
(distances distances)
(visited visited))
(if (null? distances)
(car min-inf)
(let ((min-node (loop min-inf (cdr distances) visited)))
(if (not (car min-node))
(let ((new-min (list (list t (caar distances) (car distances))))
(loop new-min (cdr distances) (cons (car distances) visited)))
min-node)))))
(define (update-distances distances visited current-node)
(let ((new-distances (map (lambda (x)
(let ((new-distance (+ (cadar distances) (length (find-edge graph current-node (car x))))))
(if (> new-distance (cadar distances))
distances
(list (list (car x) f new-distance))))
distances)))
(if (not (member current-node visited))
(map (lambda (x)
(if (not (cadar x))
(list (list (car x) t new-distance))
x))
new-distances)
new-distances)))
(define (find-edge graph node1 node2)
(let ((edges (get-edges graph node1)))
(find-if (lambda (edge)
(and (eq? (car edge) node2)
(not (member node2 (get-edges graph node2)))))
edges)))
(define (get-edges graph node)
(let ((edges (get-edges graph node)))
(if (null? edges)
'()
(let ((new-edges (map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car edges)))
(cons new-node edges)
edges)))
edges)))
(if (null? new-edges)
edges
(map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car new-edges)))
(cons new-node new-edges)
new-edges)))
new-edges))))))
(define (get-min-distance distances visited)
(let loop ((min-inf (list (list f f f)))
(distances distances)
(visited visited))
(if (null? distances)
(car min-inf)
(let ((min-node (loop min-inf (cdr distances) visited)))
(if (not (car min-node))
(let ((new-min (list (list t (caar distances) (car distances))))
(loop new-min (cdr distances) (cons (car distances) visited)))
min-node)))))
(define (update-distances distances visited current-node)
(let ((new-distances (map (lambda (x)
(let ((new-distance (+ (cadar distances) (length (find-edge graph current-node (car x))))))
(if (> new-distance (cadar distances))
distances
(list (list (car x) f new-distance))))
distances)))
(if (not (member current-node visited))
(map (lambda (x)
(if (not (cadar x))
(list (list (car x) t new-distance))
x))
new-distances)
new-distances)))
(define (find-edge graph node1 node2)
(let ((edges (get-edges graph node1)))
(find-if (lambda (edge)
(and (eq? (car edge) node2)
(not (member node2 (get-edges graph node2)))))
edges)))
(define (get-edges graph node)
(let ((edges (get-edges graph node)))
(if (null? edges)
'()
(let ((new-edges (map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car edges)))
(cons new-node edges)
edges)))
edges)))
(if (null? new-edges)
edges
(map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car new-edges)))
(cons new-node new-edges)
new-edges)))
new-edges))))))
(define (get-min-distance distances visited)
(let loop ((min-inf (list (list f f f)))
(distances distances)
(visited visited))
(if (null? distances)
(car min-inf)
(let ((min-node (loop min-inf (cdr distances) visited)))
(if (not (car min-node))
(let ((new-min (list (list t (caar distances) (car distances))))
(loop new-min (cdr distances) (cons (car distances) visited)))
min-node)))))
(define (update-distances distances visited current-node)
(let ((new-distances (map (lambda (x)
(let ((new-distance (+ (cadar distances) (length (find-edge graph current-node (car x))))))
(if (> new-distance (cadar distances))
distances
(list (list (car x) f new-distance))))
distances)))
(if (not (member current-node visited))
(map (lambda (x)
(if (not (cadar x))
(list (list (car x) t new-distance))
x))
new-distances)
new-distances)))
(define (find-edge graph node1 node2)
(let ((edges (get-edges graph node1)))
(find-if (lambda (edge)
(and (eq? (car edge) node2)
(not (member node2 (get-edges graph node2)))))
edges)))
(define (get-edges graph node)
(let ((edges (get-edges graph node)))
(if (null? edges)
'()
(let ((new-edges (map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car edges)))
(cons new-node edges)
edges)))
edges)))
(if (null? new-edges)
edges
(map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car new-edges)))
(cons new-node new-edges)
new-edges)))
new-edges))))))
(define (get-min-distance distances visited)
(let loop ((min-inf (list (list f f f)))
(distances distances)
(visited visited))
(if (null? distances)
(car min-inf)
(let ((min-node (loop min-inf (cdr distances) visited)))
(if (not (car min-node))
(let ((new-min (list (list t (caar distances) (car distances))))
(loop new-min (cdr distances) (cons (car distances) visited)))
min-node)))))
(define (update-distances distances visited current-node)
(let ((new-distances (map (lambda (x)
(let ((new-distance (+ (cadar distances) (length (find-edge graph current-node (car x))))))
(if (> new-distance (cadar distances))
distances
(list (list (car x) f new-distance))))
distances)))
(if (not (member current-node visited))
(map (lambda (x)
(if (not (cadar x))
(list (list (car x) t new-distance))
x))
new-distances)
new-distances)))
(define (find-edge graph node1 node2)
(let ((edges (get-edges graph node1)))
(find-if (lambda (edge)
(and (eq? (car edge) node2)
(not (member node2 (get-edges graph node2)))))
edges)))
(define (get-edges graph node)
(let ((edges (get-edges graph node)))
(if (null? edges)
'()
(let ((new-edges (map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car edges)))
(cons new-node edges)
edges)))
edges)))
(if (null? new-edges)
edges
(map (lambda (edge)
(let ((new-node (car edge)))
(if (not (member new-node (map car new-edges)))
(cons new-node new-edges)
new-edges)))
new-edges))))))
(define (get-min-distance distances visited)
(let loop ((min-inf (list (list f f f)))
(distances distances)
(visited visited))
(if (null? distances)
(car min-inf)
(let ((min-node (loop min-inf (cdr distances) visited)))
(if (not (car min-node))
(let ((new-min (list (list t (caar distances) (car distances))))
(loop new-min (cdr distances) (cons (car distances) visited)))
min-node)))))
(define (update-distances distances visited current-node)
(let ((new-distances (map (lambda (x)
(let ((new-distance (+ (cadar distances) (length (find-edge graph current-node (car x))))))
(if (> new-distance (cadar distances))
distances
(list (list (car x) f new-distance))))
distances)))
(if (not (member current-node visited))
(map (lambda (x)
(if (not (cadar x))
(list (list (car x) t new-distance))
x))
new-distances)
new-distances)))
(define (find-edge graph node1 node2)
(let ((edges (get-edges graph node1)))
(find
Comments NOTHING