Scheme 语言 实战 稀疏矩阵压缩存储与高效运算

Scheme阿木 发布于 2025-06-02 6 次阅读


稀疏矩阵压缩存储与高效运算:基于Scheme语言的实现

稀疏矩阵在科学计算、图像处理、网络分析等领域有着广泛的应用。由于稀疏矩阵中大部分元素为零,因此对其进行压缩存储和高效运算可以显著提高计算效率。本文将围绕稀疏矩阵压缩存储与高效运算这一主题,使用Scheme语言进行实现,并探讨其相关技术。

Scheme语言简介

Scheme是一种函数式编程语言,起源于Lisp。它以其简洁、灵活和强大的表达能力而著称。在Scheme中,我们可以利用其高阶函数和递归特性来实现复杂的算法。

稀疏矩阵的压缩存储

稀疏矩阵的压缩存储主要有两种方法:三元组表法和压缩行存储法。

三元组表法

三元组表法是一种常用的稀疏矩阵压缩存储方法。它将稀疏矩阵中的非零元素存储为一个三元组表,每个三元组包含行号、列号和元素值。

scheme
(define (make-sparse-matrix rows cols elements)
(list rows cols elements))

(define (get-element matrix i j)
(let ((elements (third matrix)))
(if (null? elements)
0
(let ((element (car elements)))
(if (and (= (first element) i) (= (second element) j))
(third element)
(get-element matrix i j))))))

(define (set-element matrix i j value)
(let ((elements (third matrix)))
(if (null? elements)
(make-sparse-matrix (first matrix) (second matrix) (list (list i j value)))
(let ((new-elements (if (and (= (first (car elements)) i) (= (second (car elements)) j))
(cons (list i j value) (cdr elements))
elements)))
(make-sparse-matrix (first matrix) (second matrix) new-elements))))))

压缩行存储法

压缩行存储法是一种针对行稀疏矩阵的压缩存储方法。它将每行的非零元素存储为一个列表,列表中的元素为三元组。

scheme
(define (make-compressed-row-storage rows cols elements)
(list rows cols elements))

(define (get-element matrix i j)
(let ((elements (third matrix)))
(let loop ((row elements) (row-index 0))
(if (null? row)
0
(let ((current-row (car row)))
(if (and (= (first current-row) i) (= (second current-row) j))
(third current-row)
(loop (cdr row) (+ row-index 1))))))))

(define (set-element matrix i j value)
(let ((elements (third matrix)))
(let loop ((row elements) (row-index 0))
(if (null? row)
(let ((new-row (list (list i j value))))
(make-compressed-row-storage (first matrix) (second matrix) (cons new-row elements)))
(let ((current-row (car row)))
(if (and (= (first current-row) i) (= (second current-row) j))
(let ((new-row (cons (list i j value) (cdr row))))
(make-compressed-row-storage (first matrix) (second matrix) (cons new-row (cdr elements))))
(loop (cdr row) (+ row-index 1)))))))))

稀疏矩阵的高效运算

稀疏矩阵的高效运算主要包括矩阵乘法、加法和转置等。

矩阵乘法

矩阵乘法是稀疏矩阵运算中最常见的操作之一。以下是一个基于三元组表法的稀疏矩阵乘法实现:

scheme
(define (sparse-matrix-multiply matrix1 matrix2)
(let ((rows1 (first matrix1))
(cols1 (second matrix1))
(elements1 (third matrix1))
(rows2 (first matrix2))
(cols2 (second matrix2))
(elements2 (third matrix2)))
(if (not (= cols1 rows2))
(error "Incompatible matrix dimensions for multiplication")
(let ((result (make-sparse-matrix rows1 cols2 '())))
(let loop ((elements1 elements1) (elements2 elements2))
(if (null? elements1)
result
(let ((i1 (first (car elements1)))
(j1 (second (car elements1)))
(v1 (third (car elements1)))
(i2 (first (car elements2)))
(j2 (second (car elements2)))
(v2 (third (car elements2))))
(if (and (= i1 i2) (= j1 j2))
(let ((new-value (+ v1 v2)))
(if (= new-value 0)
(loop (cdr elements1) (cdr elements2))
(let ((new-elements (cons (list i1 j1 new-value) (third result))))
(set-element result i1 j1 new-value)
(loop (cdr elements1) (cdr elements2)))))
(loop (cdr elements1) (cdr elements2)))))))))

矩阵加法

矩阵加法是将两个稀疏矩阵对应位置的元素相加。以下是一个基于三元组表法的稀疏矩阵加法实现:

scheme
(define (sparse-matrix-add matrix1 matrix2)
(let ((rows1 (first matrix1))
(cols1 (second matrix1))
(elements1 (third matrix1))
(rows2 (first matrix2))
(cols2 (second matrix2))
(elements2 (third matrix2)))
(if (not (= rows1 rows2) or (not (= cols1 cols2)))
(error "Incompatible matrix dimensions for addition")
(let ((result (make-sparse-matrix rows1 cols1 '())))
(let loop ((elements1 elements1) (elements2 elements2))
(if (null? elements1)
(if (null? elements2)
result
(let ((new-elements (cons (list (first (car elements2)) (second (car elements2)) (third (car elements2))) (third result))))
(set-element result (first (car elements2)) (second (car elements2)) (third (car elements2)))
(loop elements1 (cdr elements2))))
(if (null? elements2)
(let ((new-elements (cons (list (first (car elements1)) (second (car elements1)) (third (car elements1))) (third result))))
(set-element result (first (car elements1)) (second (car elements1)) (third (car elements1)))
(loop (cdr elements1) elements2))
(let ((i1 (first (car elements1)))
(j1 (second (car elements1)))
(v1 (third (car elements1)))
(i2 (first (car elements2)))
(j2 (second (car elements2)))
(v2 (third (car elements2))))
(if (and (= i1 i2) (= j1 j2))
(let ((new-value (+ v1 v2)))
(if (= new-value 0)
(loop (cdr elements1) (cdr elements2))
(let ((new-elements (cons (list i1 j1 new-value) (third result))))
(set-element result i1 j1 new-value)
(loop (cdr elements1) (cdr elements2)))))
(let ((new-elements (cons (list i1 j1 v1) (third result))))
(set-element result i1 j1 v1)
(loop (cdr elements1) elements2)))))))))))

矩阵转置

矩阵转置是将矩阵的行和列互换。以下是一个基于三元组表法的稀疏矩阵转置实现:

scheme
(define (sparse-matrix-transpose matrix)
(let ((rows (first matrix))
(cols (second matrix))
(elements (third matrix)))
(let loop ((elements elements) (result '()))
(if (null? elements)
result
(let ((i (first (car elements)))
(j (second (car elements)))
(v (third (car elements))))
(let ((new-elements (cons (list j i v) result)))
(loop (cdr elements) new-elements)))))))

总结

本文介绍了稀疏矩阵的压缩存储与高效运算,并使用Scheme语言实现了相关算法。通过三元组表法和压缩行存储法,我们可以有效地压缩稀疏矩阵的存储空间。通过矩阵乘法、加法和转置等运算,我们可以提高稀疏矩阵的计算效率。在实际应用中,根据具体需求和稀疏矩阵的特点,可以选择合适的压缩存储方法和运算算法,以实现高效的稀疏矩阵处理。

(注:本文代码仅为示例,实际应用中可能需要根据具体情况进行调整和优化。)