Scheme 语言实现 Dijkstra 算法【1】求解图最短路径问题
Dijkstra 算法是一种用于在加权图【3】中找到两点之间最短路径的算法。它由荷兰计算机科学家 Edsger Dijkstra 在 1959 年提出。Dijkstra 算法适用于单源最短路径问题【4】,即从单一源点出发,找到到达所有其他点的最短路径。
Scheme 语言是一种函数式编程【5】语言,以其简洁、优雅和可扩展性而闻名。我们将使用 Scheme 语言实现 Dijkstra 算法,并展示如何使用它来求解图的最短路径问题。
Scheme 语言简介
Scheme 是 Lisp 家族的一员,它强调函数式编程和递归【6】。Scheme 语言具有以下特点:
- 函数是一等公民【7】:在 Scheme 中,函数可以像任何其他数据类型一样被传递、存储和操作。
- 简洁的表达式:Scheme 语言的表达式简洁明了,易于阅读和理解。
- 强大的宏系统【8】:宏系统允许程序员创建新的语法结构,从而扩展语言的功能。
Dijkstra 算法原理
Dijkstra 算法的基本思想是维护一个集合 S,它包含已经找到最短路径的顶点【9】。算法开始时,S 为空,然后逐步将顶点加入到 S 中。对于每个顶点 v,算法维护一个距离值【10】 dist[v],表示从源点到 v 的最短路径的长度。算法的步骤如下:
1. 初始化:设置 dist[s] = 0(源点 s 的距离为 0),其余顶点的距离为无穷大【11】。
2. 选择未加入 S 的顶点 u,使得 dist[u] 最小。
3. 将 u 加入到 S 中。
4. 对于与 u 相邻的每个顶点 v,如果 dist[v] > dist[u] + w(u, v),则更新 dist[v] = dist[u] + w(u, v),其中 w(u, v) 是 u 和 v 之间的边的权重【12】。
5. 重复步骤 2-4,直到所有顶点都加入 S。
Scheme 语言实现 Dijkstra 算法
下面是使用 Scheme 语言实现的 Dijkstra 算法:
scheme
(define (dijkstra graph source)
(define (find-min dist visited)
(define min-inf (apply min (map car (filter (lambda (x) (not (visited (car x)))) dist)))
(if (= min-inf 'inf)
'()
(let ((min-index (position min-inf dist)))
(cons min-index (find-min dist (cons (car min-index) visited))))))
(define (update-dists dists u)
(map (lambda (v) (let ((w (gethash v dists)))
(if (and w (< (+ (gethash u dists) w) (gethash v dists)))
(puthash v (+ (gethash u dists) w) dists)
dists)))
(gethash u graph)))
(define (dijkstra-iter dists visited)
(if (null? visited)
(map (lambda (x) (list x (gethash x dists))) (keys dists))
(let ((u (car (find-min dists visited)))
(dists (update-dists dists u)))
(dijkstra-iter dists (cons u visited)))))
(define dists (make-hash-table))
(do ((v (keys graph) (rest v)))
((null? v))
(puthash v 'inf dists))
(puthash source 0 dists)
(dijkstra-iter dists '()))
(define (gethash k table)
(if (hash-table-ref table k)
(hash-table-ref table k)
'inf))
(define (puthash k v table)
(hash-table-set! table k v)
v)
(define (position x lst)
(cond ((null? lst) '())
((= x (car lst)) 0)
(else (+ 1 (position x (cdr lst))))))
实例分析
假设我们有一个图,其顶点集合为 V = {A, B, C, D},边集合为 E = {(A, B, 1), (A, C, 4), (B, C, 2), (B, D, 5), (C, D, 1)}。下面是使用上述 dijkstra【2】 算法求解从顶点 A 到顶点 D 的最短路径的示例:
```scheme
(define graph【13】
'(((A B) 1)
((A C) 4)
((B C) 2)
((B D) 5)
((C D) 1)))
(define (print-path【14】 path)
(if (null【16】? path)
'()
(let【17】 ((current (car【18】 path)))
(if (null? (cdr【19】 path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path【20】 path)
(let ((path (print-path path)))
(display【21】 "Path: ")
(display (car path))
(for-each【22】 (lambda【23】 (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline【24】)))
(define (print-dijkstra graph source【25】 target【26】)
(define (find-path【27】 path)
(let ((path (dijkstra graph source)))
(define (find-target【28】 path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display "Path: ")
(display (car path))
(for-each (lambda (x) (display " -> ")) (cdr path))
(display (car (last path)))
(newline)))
(define (print-dijkstra graph source target)
(define (find-path path)
(let ((path (dijkstra graph source)))
(define (find-target path)
(if (null? path)
'()
(let ((current (car path)))
(if (= current target)
(list current)
(find-target (cdr path)))))))
(define (print-path path)
(if (null? path)
'()
(let ((current (car path)))
(if (null? (cdr path))
(list current)
(cons current (print-path (cdr path)))))))
(define (print-dijkstra-path path)
(let ((path (print-path path)))
(display
Comments NOTHING