OpenEdge ABL 语言 基础算法 排序 查找 实现

OpenEdge ABL阿木 发布于 17 天前 5 次阅读


摘要:

本文将围绕 OpenEdge ABL 语言,探讨基础算法在排序和查找方面的实现。OpenEdge ABL 是 Progress 公司开发的一种高级编程语言,广泛应用于企业级应用开发。本文将详细介绍几种常见的排序算法和查找算法在 OpenEdge ABL 中的实现方法,并分析其优缺点。

一、

在编程过程中,排序和查找是两个非常基础且重要的算法。它们在数据处理、数据库操作等方面有着广泛的应用。OpenEdge ABL 作为一种功能强大的编程语言,同样支持这些基础算法的实现。本文将详细介绍几种常见的排序算法和查找算法在 OpenEdge ABL 中的实现方法。

二、排序算法

1. 冒泡排序(Bubble Sort)

冒泡排序是一种简单的排序算法,它通过比较相邻元素的大小,将较大的元素交换到后面,从而实现排序。以下是冒泡排序在 OpenEdge ABL 中的实现代码:

ABL

CLASS BubbleSort


PROCEDURE PUBLIC Sort(INOUT ARRAY a AS INT)


DECLARE i AS INT, j AS INT, temp AS INT;


FOR i = 1 TO a.COUNT - 1


FOR j = 1 TO a.COUNT - i


IF a[j] > a[j + 1] THEN


temp = a[j];


a[j] = a[j + 1];


a[j + 1] = temp;


END-IF


END-FOR


END-FOR


END-Sort


END-CLASS


2. 快速排序(Quick Sort)

快速排序是一种高效的排序算法,其基本思想是选取一个基准值,将数组分为两部分,一部分比基准值小,另一部分比基准值大,然后递归地对这两部分进行排序。以下是快速排序在 OpenEdge ABL 中的实现代码:

ABL

CLASS QuickSort


PROCEDURE PUBLIC Sort(INOUT ARRAY a AS INT, IN left AS INT, IN right AS INT)


DECLARE pivot AS INT, i AS INT, j AS INT, temp AS INT;


IF left < right THEN


pivot = Partition(a, left, right);


Sort(a, left, pivot - 1);


Sort(a, pivot + 1, right);


END-IF


END-Sort

PROCEDURE PUBLIC Partition(ARRAY a AS INT, IN left AS INT, IN right AS INT)


DECLARE pivot AS INT, i AS INT, j AS INT, temp AS INT;


pivot = a[right];


i = left - 1;


FOR j = left TO right - 1


IF a[j] <= pivot THEN


i = i + 1;


temp = a[i];


a[i] = a[j];


a[j] = temp;


END-IF


END-FOR


temp = a[i + 1];


a[i + 1] = a[right];


a[right] = temp;


RETURN i + 1;


END-Partition


END-CLASS


3. 归并排序(Merge Sort)

归并排序是一种分治算法,其基本思想是将数组分为两个子数组,分别对这两个子数组进行排序,然后将排序后的子数组合并成一个有序数组。以下是归并排序在 OpenEdge ABL 中的实现代码:

ABL

CLASS MergeSort


PROCEDURE PUBLIC Sort(INOUT ARRAY a AS INT, IN left AS INT, IN right AS INT)


DECLARE mid AS INT;


IF left < right THEN


mid = (left + right) / 2;


Sort(a, left, mid);


Sort(a, mid + 1, right);


Merge(a, left, mid, right);


END-IF


END-Sort

PROCEDURE PUBLIC Merge(ARRAY a AS INT, IN left AS INT, IN mid AS INT, IN right AS INT)


DECLARE i AS INT, j AS INT, k AS INT, temp[1..100] AS INT;


i = left;


j = mid + 1;


k = 1;


WHILE i <= mid AND j <= right


IF a[i] <= a[j] THEN


temp[k] = a[i];


i = i + 1;


ELSE


temp[k] = a[j];


j = j + 1;


END-IF


k = k + 1;


END-WHILE


WHILE i <= mid


temp[k] = a[i];


i = i + 1;


k = k + 1;


END-WHILE


WHILE j <= right


temp[k] = a[j];


j = j + 1;


k = k + 1;


END-WHILE


FOR i = 1 TO k - 1


a[left + i - 1] = temp[i];


END-FOR


END-Merge


END-CLASS


三、查找算法

1. 线性查找(Linear Search)

线性查找是一种最简单的查找算法,它从数组的第一个元素开始,逐个比较,直到找到目标元素或遍历完整个数组。以下是线性查找在 OpenEdge ABL 中的实现代码:

ABL

FUNCTION LinearSearch(ARRAY a AS INT, IN target AS INT)


DECLARE i AS INT;


FOR i = 1 TO a.COUNT


IF a[i] = target THEN


RETURN i;


END-IF


END-FOR


RETURN -1;


END-Function


2. 二分查找(Binary Search)

二分查找是一种高效的查找算法,它适用于有序数组。其基本思想是将数组分为两部分,根据目标值与中间元素的大小关系,确定目标值所在的部分,然后递归地在该部分进行查找。以下是二分查找在 OpenEdge ABL 中的实现代码:

ABL

FUNCTION BinarySearch(ARRAY a AS INT, IN target AS INT)


DECLARE left AS INT, right AS INT, mid AS INT;


left = 1;


right = a.COUNT;


WHILE left <= right


mid = (left + right) / 2;


IF a[mid] = target THEN


RETURN mid;


ELSE IF a[mid] < target THEN


left = mid + 1;


ELSE


right = mid - 1;


END-IF


END-WHILE


RETURN -1;


END-Function


四、总结

本文介绍了 OpenEdge ABL 语言中几种常见的排序算法和查找算法的实现方法。通过这些算法,我们可以有效地对数据进行排序和查找,提高程序的性能。在实际应用中,我们可以根据具体需求选择合适的算法,以达到最佳效果。

(注:本文代码仅供参考,实际应用中可能需要根据具体情况进行调整。)