F# 语言 机器学习基础示例

F#阿木 发布于 2025-06-20 8 次阅读


F 语言机器学习基础示例

F 是一种多范式编程语言,由微软开发,主要用于.NET平台。它结合了函数式编程和面向对象编程的特性,使得开发者能够以简洁、高效的方式编写代码。在机器学习领域,F 也逐渐崭露头角,因其强大的数据处理能力和高效的数学运算支持。本文将围绕F语言,通过一个简单的机器学习基础示例,介绍如何在F中实现机器学习算法。

环境准备

在开始之前,请确保您的开发环境中已安装以下软件:

1. Visual Studio 2019 或更高版本

2. .NET Core SDK

3. F Tools for Visual Studio

示例:线性回归

线性回归是一种简单的监督学习算法,用于预测连续值。以下是一个使用F实现线性回归的示例。

1. 定义数据结构

我们需要定义一个数据结构来存储输入数据和标签。

fsharp

type LinearRegressionData =


{


Inputs: float list


Label: float


}


2. 实现线性回归算法

接下来,我们实现线性回归算法的核心部分。这里,我们使用最小二乘法来计算回归系数。

fsharp

module LinearRegression

open System

let private mean (values: float list) =


let sum = List.sum values


let count = List.length values


sum / float count

let private dotProduct (v1: float list) (v2: float list) =


List.zip v1 v2


|> List.map (fun (x, y) -> x y)


|> List.sum

let private matrixMultiply (a: float list list) (b: float list list) =


let rows = List.length a


let cols = List.length b


let result = List.init rows (fun _ -> List.init cols (fun _ -> 0.0))


for i in 0 .. rows - 1 do


for j in 0 .. cols - 1 do


for k in 0 .. List.length a - 1 do


result.[i].[j] <- result.[i].[j] + a.[i].[k] b.[k].[j]


result

let private transpose (matrix: float list list) =


let rows = List.length matrix


let cols = List.length matrix


let result = List.init cols (fun _ -> List.init rows (fun _ -> 0.0))


for i in 0 .. rows - 1 do


for j in 0 .. cols - 1 do


result.[j].[i] <- matrix.[i].[j]


result

let private inverse (matrix: float list list) =


let determinant = dotProduct matrix (transpose matrix)


let adjugate = List.init (List.length matrix) (fun _ -> List.init (List.length matrix) (fun _ -> 0.0))


for i in 0 .. List.length matrix - 1 do


for j in 0 .. List.length matrix - 1 do


let minor = List.init (List.length matrix - 1) (fun _ -> List.init (List.length matrix - 1) (fun _ -> 0.0))


for k in 0 .. List.length matrix - 1 do


for l in 0 .. List.length matrix - 1 do


if k <> i && l <> j then


minor.[k].[l] <- matrix.[k].[l]


adjugate.[i].[j] <- (if i + j % 2 = 0 then 1.0 else -1.0) dotProduct minor (transpose minor)


let adjugateTranspose = transpose adjugate


let inverse = List.init (List.length matrix) (fun _ -> List.init (List.length matrix) (fun _ -> 0.0))


for i in 0 .. List.length matrix - 1 do


for j in 0 .. List.length matrix - 1 do


inverse.[i].[j] <- adjugateTranspose.[i].[j] / determinant


inverse

let private predict (theta: float list) (x: float list) =


let xTransposed = transpose [x]


let xTransposedX = matrixMultiply xTransposed x


let xTransposedXInverse = inverse xTransposedX


let xTransposedXInverseXTransposed = matrixMultiply xTransposedXInverse xTransposed


let xTransposedXInverseXTransposedY = matrixMultiply xTransposedXInverseXTransposed [List.sum (List.map (fun (data: LinearRegressionData) -> data.Label) data)]


let theta = List.append [1.0] theta


let thetaTransposed = transpose [theta]


let hypothesis = matrixMultiply thetaTransposed xTransposedXInverseXTransposedY


List.head hypothesis

let private computeCost (theta: float list) (data: LinearRegressionData list) =


let m = List.length data


let predictions = List.map (fun (data: LinearRegressionData) -> predict theta data.Inputs) data


let errors = List.map2 (fun (pred: float) (label: float) -> pred - label) predictions (List.map (fun (data: LinearRegressionData) -> data.Label) data)


let squaredErrors = List.map (fun (error: float) -> error error) errors


let cost = List.sum squaredErrors / (2.0 float m)


cost

let private gradientDescent (theta: float list) (data: LinearRegressionData list) (alpha: float) (iterations: int) =


let m = List.length data


let theta = List.init (List.length theta) (fun _ -> 0.0)


for i in 1 .. iterations do


let errors = List.map2 (fun (data: LinearRegressionData) -> predict theta data.Inputs) data (List.map (fun (data: LinearRegressionData) -> data.Label) data)


let gradients = List.map2 (fun (pred: float) (label: float) -> (pred - label) (1.0 / float m)) errors (List.map (fun (data: LinearRegressionData) -> data.Label) data)


for j in 0 .. List.length theta - 1 do


theta.[j] <- theta.[j] - alpha gradients.[j]


theta


3. 使用线性回归

现在,我们可以使用这个线性回归算法来训练和预测数据。

fsharp

let data = [


{ Inputs = [1.0; 2.0]; Label = 3.0 }


{ Inputs = [1.0; 3.0]; Label = 5.0 }


{ Inputs = [1.0; 4.0]; Label = 7.0 }


]

let theta = [0.0; 0.0]


let alpha = 0.01


let iterations = 1000

let trainedTheta = gradientDescent theta data alpha iterations

let prediction = predict trainedTheta [1.0; 2.0]


printfn "Predicted value: %f" prediction


总结

本文通过一个简单的线性回归示例,展示了如何在F语言中实现机器学习算法。F语言在机器学习领域具有很大的潜力,其简洁的语法和高效的数学运算支持使得开发者能够轻松地实现各种机器学习算法。随着F语言的不断发展,相信其在机器学习领域的应用将会越来越广泛。